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Is there tension between observed 
small scale structure and cold 

dark matter? 



Predictions of the standard Cold Dark Matter model

2. Abundance of ‘sub-structure’ 
(sub-halos) in galaxies

1. Density profiles rise towards the centers of galaxies

Navarro-Frenk-White (NFW) model

Most of mass contained in highest-
mass sub-halos
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Mass[Solar mass]

h�annvi ' 3⇥ 10�26 cm3 s�1 (1)

⇢(r) =
⇢s

(r/rs)(1 + r/rs)2
(2)

1

Sub-halos comprise few percent of 
total halo mass

Universal for all halo masses



Problems with the standard Cold Dark Matter model

2. ‘Missing satellites problem’:
Simulations have more dark matter subhalos than there are 
observed dwarf satellite galaxies

Earilest papers:
Kauffmann et al. 1993; Klypin et al. 1999; Moore et al. 1999

1. Density of dark matter halos: 
Faint, dark matter-dominated galaxies appear less dense that 
predicted in simulations 

General arguments: Kleyna et al. MNRAS 2003, 2004;Goerdt et al. 
APJ2006;  de Blok et al. AJ 2008
Dwarf spheroidals: Gilmore et al. APJ 2007; Walker & Penarrubia et 
al. APJ 2011; Angello & Evans APJ 2012



Solutions to the issues in Cold Dark Matter

2. The data is wrong
i) Kinematics of dwarf spheroidals (dSphs) are more difficult than assumed
ii) Counting satellites

a) Many more faint satellites around the Milky Way
b) Milky Way is an oddball [Liu et al. 2010, Tollerud et al. 2011, Guo et al. 2011, Strigari 
& Wechsler ApJ 2012]

 

1. The theory is wrong
i) Not enough physics in theory/simulations 

(Talks yesterday by M. Boylan-Kolchin, M. Kuhlen) [Wadepuhl & 
Springel MNRAS 2011; Parry et al. MRNAS 2011; Pontzen & Governato MRNAS 2012; 
Brooks et al. ApJ 2012]

ii) Cosmology/dark matter is wrong (Talk yesterday by A. Peter)



1. Self-interacting dark matter
Scattering cross section much larger than standard 
WIMP cross section

2. Warm dark matter
Dark matter has larger velocity in the early Universe 
than standard WIMPs

Dark matter solutions



Self-interacting dark matter

✦ Canonical WIMP model
Interaction rate in Milky Way 1013 times greater than age of Universe!

✦ Bounds from halo shapes [Miralda-escude 2002] and galaxy 
cluster collisions [Markevitch et al. 2004, Randall et al. 2008, 
Rocha et al. 2013, Peter et al. 2013]

✦ Upper bound 20 orders of magnitude greater than 
corresponding WIMP cross section



Self-interacting dark matter simulations

✦ Halos, subhalos more 
spherical than cold dark matter

✦ Halos, subhalos less dense 
than cold dark matter

6 M. Vogelsberger et al.

Figure 3. Density projections of the Aq-A halo for the different DM models of Table 1 (RefP0-3). The projection cube has a side length of 270 kpc. Clearly,
the disfavoured RefP1 model with a large constant cross section produces a very different density distribution with a spherical core in the centre, contrary to
the elliptical and cuspy CDM halo. Also, substructures are less dense and more spherical in this simulation. The vdSIDM models RefP2 and RefP3 on the
other hand can hardly be distinguished from the CDM case (RefP0).

for the different models. whereas the right panel shows the mean
free path � = (⇢ h�

T

/m

�

i)�1 as a function of radius for the SIDM
models. The dotted, dashed and solid lines show different levels
of resolution, characterised by a particle mass m

p

and a Plummer
equivalent gravitational softening length ✏: Aq-A-5 (m

p

= 3.143⇥
106 M�, ✏ = 684.9 pc), Aq-A-4 (m

p

= 3.929 ⇥ 105 M�, ✏ =
342.5 pc) and Aq-A-3 (m

p

= 4.911⇥104 M�, ✏ = 120.5 pc). The
runs show good convergence for radii larger than 2.8✏ indicated by
the vertical lines.

In the figure we see that RefP1 develops a large core reach-
ing the solar circle (⇠ 7 kpc). This is because the cross section
has no velocity dependence in this case and the particle scattering

works at full strength irrespective of (sub)halo mass. Although this
case is ruled out by current astrophysical constraints (see Section
2.1), it serves as a reference for the effect of a large scattering cross
section at the scales of MW-like haloes in a full cosmological sim-
ulation. On the contrary, RefP2 and RefP3 result in a main halo
whose density profile follows very closely the one from the CDM
prediction of RefP0 down to 1 kpc from the centre. At smaller radii,
where the typical particle velocities are smaller, self-interaction is
large enough to produce a core. The mean free path radial profile
clearly illustrates the radius where collisions are more important
for the different SIDM models, which is around the core radius. It
also highlights the difference between the RefP2 and RefP3 mod-
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Warm dark matter

✦ Particle falls out of equilibrium with large velocities
`Sterile’ neutrinos with mass ~ 1-10 keV [Dodelson & Widrow 1994; Shi & Fuller 
1999; Abazajian et al. 2012]

✦ Particles not absolutely stable
Lifetimes longer than age of Universe

✦ Photons from decays be detectable in modern and forthcoming 
x-ray detectors

ments) (see e.g. [10] and references therein). Searches for the annihilation products of these particles
(indirect detection) are performed by PAMELA, Fermi and other high-energy cosmic missions (see e.g.
reviews [11,12]). No convincing signals has been observed so far in either ‘‘direct’’ or ‘‘indirect’’
searches.

Additionally, no hints of new physics at electroweak had turned up at the LHC or in any other
experiments. This makes alternative approaches to the DM problem ever more viable.

2. Sterile neutrino dark matter

Another viable generalization of the neutrino DM idea is given by sterile neutrino dark matter sce-
nario [13–20], see [14,15] for review. Sterile neutrino is a right-chiral counterpart of the left-chiral
neutrinos of the SM (called ‘active ’ neutrinos in this context). Adding these particles to the SM
Lagrangian makes neutrinos massive and is therefore their existence provides a simple and natural
explanation of the observed neutrino flavor oscillations. These particles are singlet leptons because
they carry no charges with respect to the Standard Model gauge groups (hence the name), and there-
fore along with their Yukawa interaction with the active neutrinos (=‘Dirac mass’) they can have a
Majorana mass term (see e.g. [16] for details). They interact with the matter via creation of virtual
active neutrino (quadratic mixing) and in this way they effectively participate in weak reactions
(see e.g. Fig. 1(a)). At energies much below the masses of the W and Z-bosons, their interaction can
be described by the analog of the Fermi theory with the Fermi coupling constant GF suppressed by
the active-sterile neutrino mixing angleh – the ratio of their Dirac to Majorana masses (Fig. 1(b)) :

h2
a ¼

X

sterile N

mDirac; a

MMajorana

!!!!

!!!!
2

ð1Þ

(this mixing can be different for different flavors a).
It was observed long ago that such particles can be produced in the Early Universe through mixing

with active neutrinos [13] and have a correct relic density for any mass [13,17-27].
The existence of sterile neutrinos is motivated by the observational phenomena beyond the Standard

Model (unlike WIMPs that are motivated first of all by the theoretical considerations of stability of the
Higgs mass against quantum corrections that could require a fine-tuning of parameters of the model).
Namely, sterile neutrinos would provide a simple and natural explanations of the neutrino flavor oscil-
lations [20-23]. However, a single sterile neutrino would be unable to explain the two observed mass
splittings between Standard Model neutrinos – at least two sterile neutrinos are needed for that.
Moreover, should sterile neutrino play the role of DM, its mixing with active neutrinos would be
too small to contribute significantly to the flavor oscillations – its life time should be very large
and, therefore, interaction strength should be too feeble [24,25]. Therefore, in order to explain dark
matter and neutrino mass (one for each SM flavor), the minimal model should contain 3 right-handed

Fig. 1. Example of interactions of sterile neutrino: decay N ! mema!ma (panel (a)) and its effective Fermi-like description (panel
(b)) and loop-mediated decay N ? c + ma (panel (c)).

138 A. Boyarsky et al. / Dark Universe 1 (2012) 136–154
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Warm dark matter simulations

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8
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Lovell et al 2011



✦ CDM, and non-CDM models now in better position to provide 
testable predictions

Theory and observations

✦ Put aside theoretical aspects. Consider observational 
systematics

✦ Masses of dwarf spheroidals (dSphs)
✦ Count satellites 



Masses of dwarf spheroidals 



Dark matter in satellite galaxies (dwarf spheroidals)

Dark matter in all satellites

Figure 1: The integrated mass of the Milky Way dwarf satellites, in units of solar masses, within
their inner 0.3 kpc as a function of their total luminosity, in units of solar luminosities. The circle
(red) points on the left refer to the newly-discovered SDSS satellites, while the square (blue) points
refer to the classical dwarf satellites discovered pre-SDSS. The error bars reflect the points where
the likelihood function falls off to 60.6% of its peak value.
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Strigari et al, Nature 2008
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✦ Velocity dispersion ~ 5-10 km/s

✦ Uncertainties ~ 1-2 km/s

✦ Common densities over observed scales
[Strigari et al. 2008]



Densities of dwarf spheroidals

✦ Future measurements of 
photometry and velocities will 
test these solutions

✦ Parameter space is very  
degenerate. CDM-based 
NFW models fit all dwarf 
spheroidals
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Figure 4 Photometric profiles (left) and velocity dispersion profiles (right) for five classical dSphs,
using LCDM-based models for the dark matter potentials. From Strigari et al. [152].

Schwarszchild mass estimates have now been published for three dSphs, Fornax, Sculptor, and
Draco. Using a cored model for the stellar light profile, Jardel and Gebhardt [154] find a mass
within the half-light radius that is consistent with those deduced from moment and distribution
function-based methods. Breddels et al. [155] determine that the mass of Sculptor within 1 kpc is
⇠ 108 M�, which is again in agreement with the above methods. Jardel et al. [156] determine a
lower bound to the mass of Draco of a few times 108 M� within a physical radius of about 500 pc
where kinematics of stars are measured.

4.3. Ultra-faint satellites

Measuring the velocity dispersion, and thus the mass, of ultra-faint satellites poses di↵erent
sets of challenges in comparison to measuring the velocity dispersions of classical satellites. First,
by their very nature, the constituent stars are fainter, with typical target stars having a magnitude
of r = 20 � 21. For a realistic exposure level, the Keck/DEIMOS spectrograph provides a signal-
to-noise on a star of this magnitude of approximately 15 [157]. Second, the measured uncertainties
derived from the stellar spectra are approximately 2� 3 km/s, which, because it is within about a
factor of two of the intrinsic velocity dispersions of the systems, complicates the extraction of the
intrinsic velocity dispersion that arises from the distribution function (Low velocity dispersions at
this level have been measured in globular clusters [158]). Third, the measured line-of-sight velocities
may contain a component that is due to the motion of the star around a binary companion. Early
studies of classical dSphs indicated that this binary contamination was ⇠ 1 � 2 km/s, so it is a
small systematic to classical satellite mass measurements [159]. However, as measurements of low
velocity dispersion globular clusters clearly indicate that binaries do significantly contaminate the
velocity dispersion of bound stellar systems [160], detailed understanding of this e↵ect is required
in ultra-faint satellites.
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Figure 4 Photometric profiles (left) and velocity dispersion profiles (right) for five classical dSphs,
using LCDM-based models for the dark matter potentials. From Strigari et al. [152].

Schwarszchild mass estimates have now been published for three dSphs, Fornax, Sculptor, and
Draco. Using a cored model for the stellar light profile, Jardel and Gebhardt [154] find a mass
within the half-light radius that is consistent with those deduced from moment and distribution
function-based methods. Breddels et al. [155] determine that the mass of Sculptor within 1 kpc is
⇠ 108 M�, which is again in agreement with the above methods. Jardel et al. [156] determine a
lower bound to the mass of Draco of a few times 108 M� within a physical radius of about 500 pc
where kinematics of stars are measured.

4.3. Ultra-faint satellites

Measuring the velocity dispersion, and thus the mass, of ultra-faint satellites poses di↵erent
sets of challenges in comparison to measuring the velocity dispersions of classical satellites. First,
by their very nature, the constituent stars are fainter, with typical target stars having a magnitude
of r = 20 � 21. For a realistic exposure level, the Keck/DEIMOS spectrograph provides a signal-
to-noise on a star of this magnitude of approximately 15 [157]. Second, the measured uncertainties
derived from the stellar spectra are approximately 2� 3 km/s, which, because it is within about a
factor of two of the intrinsic velocity dispersions of the systems, complicates the extraction of the
intrinsic velocity dispersion that arises from the distribution function (Low velocity dispersions at
this level have been measured in globular clusters [158]). Third, the measured line-of-sight velocities
may contain a component that is due to the motion of the star around a binary companion. Early
studies of classical dSphs indicated that this binary contamination was ⇠ 1 � 2 km/s, so it is a
small systematic to classical satellite mass measurements [159]. However, as measurements of low
velocity dispersion globular clusters clearly indicate that binaries do significantly contaminate the
velocity dispersion of bound stellar systems [160], detailed understanding of this e↵ect is required
in ultra-faint satellites.
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Multiple populations in Sculptor dwarf spheroidal

Kinematic status and mass content of the Sculptor dSph 3

FIG. 2.— Number surface density profile of RGB stars in Scl from
ESO/WFI photometry (squares with error-bars) overlaid to the best-fitting
two component model (solid line) given by the sum of a Sersic (dotted line)
and Plummer (dashed line) profiles. These are obtained from the rescaled
profiles that best fit, respectively, the distribution of RHB and BHB stars
(diamonds and asterisks with error-bars, respectively) in Scl. The Galactic
stellar contamination has been subtracted from each point.

defining an elliptical annulus (distance bin), is:
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(vi−v)2

2(σ2+σ2
i
)

√

2π(σ2 + σ2
i )

. (1)

NMW and N are the expected number of MW and Scl RGB
stars in a distance bin (NT = NMW+N ). fMW is the velocity
distribution of MW stars, which we assume does not change
across the face of Scl, and is derived from the Besançon model
(Robin et al. 2003) selecting stars along the l.o.s. and with
magnitudes and colors similar to the Scl RGB stars. We as-
sume that the Scl velocity distribution is a Gaussian whose
peak velocity v and dispersion σ (the quantities we want to de-
rive) are allowed to vary with projected radius. We derive the
normalization factors,NMW/NT andN/NT directly from the
observed RGB surface density profile and relative foreground
density. To estimate the fraction of MW interlopers in the MR
and MP sub-samples we simply count how many stars with
velocities < vsys − 3σ (i.e. the non-membership region more
populated by foreground stars) are classified as MR and as
MP on the basis of their CaT derived [Fe/H] value. The like-
lihood of observing a set of velocities vi with i = 1, ..., N is
L(v1, ..., vN | v, σ) =

∏N
i=1 P (vi). We maximize the likeli-

hood function in each distance bin and find the corresponding
best-fitting v(R) and σ(R). The errors are determined from
the intervals corresponding to 68.3% probability.
The kinematics of the Scl MR andMPRGB stars are clearly

different (Figure 3a,b): the l.o.s. velocity dispersion profile
of MR stars declines from ∼9 km s−1 in the center to ∼2
km s−1 at projected radius R = 0.5 deg, while MP stars are
kinematically hotter and exhibit a constant or mildly declining
velocity dispersion profile.

4.2. Predicted Velocity Dispersion Profile
The l.o.s. velocity dispersion predicted by the Jeans equa-

tion for a spherical system in absence of net-streaming mo-

FIG. 3.— l.o.s. velocity dispersion profile (squares with errorbars), from
rotation-subtracted GSR velocities, for the MR (a), MP (b) and all (c) RGB
stars in Scl. The lines show the best-fitting pseudo-isothermal sphere (solid)
and NFW model (dashed) in the hypothesis of β = βOM. Panel c) shows
that the best-fitting pseudo-isothermal sphere with β = βOM (solid) and the
NFW model with β =const (dashed) are statistically indistinguishable.

tions8 is (Binney & Mamon 1982):

σ2
los(R) =

2

Σ∗(R)

∫ ∞

R

ρ∗(r)σ2
r,∗ r

√
r2 − R2

(1 − β
R2

r2
)dr (2)

where R is the projected radius (on the sky), r is the 3D
radius. The l.o.s. velocity dispersion depends on: the mass
surface density Σ∗(R) and mass density ρ∗(r) of the tracer,
which in our case are the MR and the MP RGB stars; the
tracer velocity anisotropy β, defined as β = 1− σ2

θ/σ2
r , which

we allow to be different for MR and MP stars; the radial ve-
locity dispersion σr,∗ for the specific component, which de-
pends on the total mass distribution (for the general solution
see Battaglia et al. 2005).
We consider two DM mass models: a pseudo-isothermal

sphere, typically cored, (see Battaglia et al. 2005), and an
NFW profile, cusped (Navarro, Frenk & White 1996). Since
the contribution of the stars to the total mass of the sys-
tem is negligible for reasonable stellar M/L ratios, we do
not consider it further. As β is unknown we explore two
hypotheses: a velocity anisotropy constant with radius, and
an Osipkov-Merritt (OM) velocity anisotropy (Osipkov 1979;
Merritt 1985). For the latter profile, the velocity anisotropy
is β = r2/(r2 + r2

a) where ra is the anisotropy radius.

4.3. Results from the Two-Components Mass Modeling
We explore a range of core radii rc for the pseudo-

isothermal sphere (rc = 0.001, 0.05, 0.1, 0.5, 1 kpc) and
a range of concentrations c for the NFW profile (c =
20, 25, 30, 35). By fixing these, each mass model has two
free parameters left: the anisotropy and the DM halo mass
(enclosed within the last measured point for the isothermal
8 We checked that the assumptions of sphericity and absence of streaming

motions have a negligible effect on the results: the observed l.o.s. velocity
dispersion profiles derived adopting circular distance bins and not subtract-
ing rotation are consistent at the 1σ level in each bin with the observed l.o.s.
velocity dispersion profile derived adopting elliptical binning and by subtract-
ing the observed rotation signal (see B07)
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i )

. (1)

NMW and N are the expected number of MW and Scl RGB
stars in a distance bin (NT = NMW+N ). fMW is the velocity
distribution of MW stars, which we assume does not change
across the face of Scl, and is derived from the Besançon model
(Robin et al. 2003) selecting stars along the l.o.s. and with
magnitudes and colors similar to the Scl RGB stars. We as-
sume that the Scl velocity distribution is a Gaussian whose
peak velocity v and dispersion σ (the quantities we want to de-
rive) are allowed to vary with projected radius. We derive the
normalization factors,NMW/NT andN/NT directly from the
observed RGB surface density profile and relative foreground
density. To estimate the fraction of MW interlopers in the MR
and MP sub-samples we simply count how many stars with
velocities < vsys − 3σ (i.e. the non-membership region more
populated by foreground stars) are classified as MR and as
MP on the basis of their CaT derived [Fe/H] value. The like-
lihood of observing a set of velocities vi with i = 1, ..., N is
L(v1, ..., vN | v, σ) =

∏N
i=1 P (vi). We maximize the likeli-

hood function in each distance bin and find the corresponding
best-fitting v(R) and σ(R). The errors are determined from
the intervals corresponding to 68.3% probability.
The kinematics of the Scl MR andMPRGB stars are clearly

different (Figure 3a,b): the l.o.s. velocity dispersion profile
of MR stars declines from ∼9 km s−1 in the center to ∼2
km s−1 at projected radius R = 0.5 deg, while MP stars are
kinematically hotter and exhibit a constant or mildly declining
velocity dispersion profile.

4.2. Predicted Velocity Dispersion Profile
The l.o.s. velocity dispersion predicted by the Jeans equa-

tion for a spherical system in absence of net-streaming mo-

FIG. 3.— l.o.s. velocity dispersion profile (squares with errorbars), from
rotation-subtracted GSR velocities, for the MR (a), MP (b) and all (c) RGB
stars in Scl. The lines show the best-fitting pseudo-isothermal sphere (solid)
and NFW model (dashed) in the hypothesis of β = βOM. Panel c) shows
that the best-fitting pseudo-isothermal sphere with β = βOM (solid) and the
NFW model with β =const (dashed) are statistically indistinguishable.

tions8 is (Binney & Mamon 1982):

σ2
los(R) =

2

Σ∗(R)

∫ ∞

R

ρ∗(r)σ2
r,∗ r

√
r2 − R2

(1 − β
R2

r2
)dr (2)

where R is the projected radius (on the sky), r is the 3D
radius. The l.o.s. velocity dispersion depends on: the mass
surface density Σ∗(R) and mass density ρ∗(r) of the tracer,
which in our case are the MR and the MP RGB stars; the
tracer velocity anisotropy β, defined as β = 1− σ2

θ/σ2
r , which

we allow to be different for MR and MP stars; the radial ve-
locity dispersion σr,∗ for the specific component, which de-
pends on the total mass distribution (for the general solution
see Battaglia et al. 2005).
We consider two DM mass models: a pseudo-isothermal

sphere, typically cored, (see Battaglia et al. 2005), and an
NFW profile, cusped (Navarro, Frenk & White 1996). Since
the contribution of the stars to the total mass of the sys-
tem is negligible for reasonable stellar M/L ratios, we do
not consider it further. As β is unknown we explore two
hypotheses: a velocity anisotropy constant with radius, and
an Osipkov-Merritt (OM) velocity anisotropy (Osipkov 1979;
Merritt 1985). For the latter profile, the velocity anisotropy
is β = r2/(r2 + r2

a) where ra is the anisotropy radius.

4.3. Results from the Two-Components Mass Modeling
We explore a range of core radii rc for the pseudo-

isothermal sphere (rc = 0.001, 0.05, 0.1, 0.5, 1 kpc) and
a range of concentrations c for the NFW profile (c =
20, 25, 30, 35). By fixing these, each mass model has two
free parameters left: the anisotropy and the DM halo mass
(enclosed within the last measured point for the isothermal
8 We checked that the assumptions of sphericity and absence of streaming

motions have a negligible effect on the results: the observed l.o.s. velocity
dispersion profiles derived adopting circular distance bins and not subtract-
ing rotation are consistent at the 1σ level in each bin with the observed l.o.s.
velocity dispersion profile derived adopting elliptical binning and by subtract-
ing the observed rotation signal (see B07)

Metal Rich (MR) and Metal Poor (MP) population 
(Battaglia et al 2008)



• Walker & Penarrubia (ApJ 2011) state that multiple populations 
are inconsistent with an NFW profile

• Agnello & Evans (ApJ 
2012) use virial theorem to 
rule out NFW profile

A Virial Core in Sculptor 3

Figure 1. Left: Virial stripes for the two stellar populations in Sculptor in a cusped NFW potential, including the self-gravity of the stellar
populations (Υ! = 8). Purple shows the metal-rich population, blue the metal-poor population. In each stripe, the central line is the mean value
of log10(ρ0), whilst the median and outer lines follow the 1σ and 2σ deviations. Center and Right: Virial stripes for the two stellar populations
in a NFW potential with small core, without (Υ! = 0) and with (Υ! = 8) self-gravity.

ε = rc/rs rs [in kpc] rs [in kpc] rs [in kpc]
(Υ! → 0) (Υ! = 4) (Υ! = 8)

1 0.72 1.06 1.23
0.5 0.94 1.40 1.54
0.25 1.2 1.92 2.20
0.125 1.6 2.88 3.28
0.0625 2.4 4.48 4.96

Table 1
Minimum rs for two-sigma overlapping of the virial stripes.

Hence, a necessary condition for a NFW halo to support two
stellar populations with Plummer profiles is

(

σ0,r

σ0,p

)2

> 2
(

Rh,r
Rh,p

)

. (14)

This is identical to eq (22) of Amorisco & Evans (2012a),
derived under different assumptions. If, instead of Plummer
profiles, exponential laws are used to fit the surface brightness
profiles, then the numerical factor becomes 1.9 instead of 2 in
eqn (11). The analogue of eqn (13) is unchanged, so that the
necessary condition for an NFW halo to support two stellar
populations with exponential surface brightness profiles is

(

σ0,r

σ0,p

)2

> 1.9
(

Rh,r
Rh,p

)

. (15)

Using the best-fitting values provided above for Sculptor, it is
immediate to check that the NFW potential is ruled out. Note
that the constraints are simply the requirement that there is a
NFW model with rs < ∞. This is a much looser constraint
than requiring consistency with an NFW model with a con-
centration c ≈ 20, as predicted by cold dark matter theories.

3.2. The Virial Stripes
The simple results already suggest that the energetics of the

two populations are inconsistent with an NFW profile. How-
ever, it is prudent to confirm this result numerically, discard-
ing some of the simplifying assumptions made above.
Since the measured profiles come with errors, we operate

in the following manner. For each value of rs, we compute ρ0
separately for the two populations for many different photo-
metric (8) and kinematic (9) profiles. We weight each result
with the likelihood of the fit. Then, varying rs produces a
virial stripe for each population in the (ρ0, rs)-plane. If the
two stripes overlap at 2σ at a particular rs, then the model for
the potential is plausible at the 2σ level. Nothing prevents us
from including the contribution of the luminous tracers to the
potential as well. The virial equations then depend also on

the stellar mass-to-light ratio Υ!, which may be different for
the two populations. The projected potential energy Wlos has
a contributionWdm from the dark component and a correction
Wsel f from the two luminous ones. For Plummer profiles, we
have for the i−th population:

Wsel f ,i = π
2Gµ0,iRh,i

∑

j
Υ!, jµ0, jR2h, jw

(

Rh,i/Rh, j
)

, (16)

with

w(x) =
x3

[

(5x2 + 3)K(1 − x2) − (x2 + 7)E(1 − x2)
]

3(1 − x2)3
, (17)

where K,E are complete elliptic integrals and Υ!, j is the lu-
minous mass-to-light ratio of the j−th population. As the µ0, j
are given by number counts and not directly by luminosities,
a common rescaling is applied to both populations such that
the total luminosity is fixed at the observed value (taken from
table 6 in Irwin & Hatzidimitriou 1995).
The leftmost panel of Figure 1 shows the virial stripes for

the two populations in Sculptor, excluding and including the
effects of the self-gravity for the luminous component. The
two stripes never overlap at the 2σ level. This confirms the
result deduced from our simple argument in the previous sec-
tion: there is no NFW halo compatible with the kinetic ener-
gies of the two stellar components in Sculptor. The center and
rightmost panels of Figure 1 show the virial stripes when the
dark halo density is the simplest cored analogue of the NFW
halo, namely

cNFW = ρ0

(ε2 + r2/r2s )1/2(1 + r2/r2s )
. (18)

In this case, the stripes do overlap at the 2σ level provided the
core radius rc ≡ rsε is at least 150 pc, if the self-gravity of
the stellar populations is neglected. Incorporating self-gravity
causes the core radius to increase somewhat, as we see in
Table 1. This shows how the minimum rs for 2σ overlap
varies with changing Υ! for different models. The first col-
umn (Υ! → 0) stands for models in which the self-gravity of
the stars is omitted. Since both half-light radii are smaller or
equal to rs in the dark matter only case, adding self-gravity is
expected to yield larger cores, as in fact is confirmed by the
results in the Table.

4. DISCUSSION AND CONCLUSIONS
The arguments in this Letter show that the kinematics of

multiple populations in dSphs provide a substantial challenge
to the predictions of cold dark matter cosmogonies. In the
case of one of the best studied dSphs, Sculptor, there is no
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• WP11 and AE12 modeling turn out to be not general enough

• Construct generalized model of photometry and kinematics of dSphs

Multiple populations in Sculptor dwarf spheroidal

• Maximum likelihood analysis (Strigari, Frenk, White 2013 in prep)

•NFW profiles are consistent with the multiple populations

Do the multiple stellar populations in the Sculptor dwarf spheroidal rule out cold dark matter? 3
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Figure 1. 68% c.l. and 90% c.l. contours for (ρs, rs) (left) and (M200 −Vmax) (right) from an analysis that fits to both the photometry
and the kinematics of the different populations. For both the MR and MP population, we use the velocity anisotropy profile of the form
Equation 3.

1 10 100
Radius [arcmin]

0.001

0.010

0.100

1.000

10.000
Su

rf
ac

e 
D

en
si

ty
 [

n
o

rm
 a

rb
it

ra
ry

] mp

β = 0

1 10 100
Radius [arcmin]

0.001

0.010

0.100

1.000

10.000

Su
rf

ac
e 

D
en

si
ty

 [
n

o
rm

 a
rb

it
ra

ry
] mr

β = 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Radius [kpc]

0

5

10

15

20

V
el

o
ci

ty
 d

is
p

er
si

o
n

 [
k

m
/

s]

β=0

1 10 100
Radius [arcmin]

0.001

0.010

0.100

1.000

10.000

Su
rf

ac
e 

D
en

si
ty

 [
n

o
rm

 a
rb

it
ra

ry
] mp

β variable

1 10 100
Radius [arcmin]

0.001

0.010

0.100

1.000

10.000

Su
rf

ac
e 

D
en

si
ty

 [
n

o
rm

 a
rb

it
ra

ry
] mr

β variable

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Radius [kpc]

0

5

10

15

20

V
el

o
ci

ty
 d

is
p

er
si

o
n

 [
k

m
/

s]

β variable

Figure 3. Upper panels: From left to right, the photometry of the MP, MR populations, and the velocity dispersions of the populations for
the set of parameters that maximize the likelihood. In the velocity dispersion figure, the upper data and curve is for the MP population,
and the bottom data and curve is for the MR population. The parameters for these curves are given above the horizontal line in Table 1.
Lower panels: Same as upper three panels, except now assume the variable β(r) model in Equation 3. The parameters of the curves are
given below the horizontal line in Table 1. The data is from (Battaglia et al. 2008)
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• Orbits of the inner, metal rich population are radial 

Multiple populations in Sculptor dwarf spheroidal

Testable predictions

• Cusp in the stellar density profile 

• Forthcoming HST observations provide astrometry < 10 km/s 
(almost the the projected SIM sensitivity)



Counting satellites



Testing the oddball hypothesis 

Hundreds of Milky Way Satellites? 5

TABLE 1
PROPERTIES OF KNOWN MILKY WAY SATELLITE GALAXIES. DATA ARE FROM
BOTHUN & THOMPSON (1988); MATEO (1998); GREBEL ET AL. (2003); SIMON

& GEHA (2007); MARTIN ET AL. (2008); DE JONG ET AL. (2008).

Satellite MV LV [L!] dsun[kpc] Rhalf [pc]
a ε b

SDSS-discovered Satellites

Canes Venatici I -8.6 2.36 × 105 224 565 0.99

Leo T -8.0 5.92 × 104 417 170 0.76

Hercules -6.6 3.73 × 104 138 330 0.72

Boötes I -6.3 2.83 × 104 60 242 1.0

Ursa Major I -5.5 1.36 × 104 106 318 0.56

Leo IV -5.0 8.55 × 103 158 116 0.79

Canes Venatici II -4.9 7.80 × 103 151 74 0.47

Ursa Major II -4.2 4.09 × 103 32 140 0.78

Coma -4.1 3.7 × 103 44 77 0.97

Boötes II -2.7 1.03 × 103 43 72 0.2

Willman 1 -2.7 1.03 × 103 38 25 0.99

Segue 1 -1.5 3.40 × 102 23 29 1.0

Classical (Pre-SDSS) Satellites

Large Magellanic Cloud -18.5 2.15 × 109 49 2591 -

Small Magellanic Cloud -17.1 5.92 × 108 63 1088 -

Sagittarius -15.0 8.55 × 107 28 125 -

Fornax -13.1 1.49 × 107 138 460 -

Leo I -11.9 4.92 × 106 270 215 1.0

Leo II -10.1 9.38 × 105 205 160 1.0

Sculptor -9.8 7.11 × 105 88 110 -

Sextans -9.5 5.40 × 105 86 335 -

Carina -9.4 4.92 × 105 94 210 -

Draco -9.4 4.92 × 105 79 180 1.0

Ursa Minor -8.9 1.49 × 105 69 200 -

aSatellite projected half light radius.
bDetection efficiency from Koposov et al. (2007).
!Galaxy sits within the SDSS DR5 footprint.
†Satellite is not used in fiducial LF correction.

from data for the SDSS-II SEGUE survey (Belokurov et al.
2007). All of the objects we list in this table have large mass-
to-light ratios (Martin et al. 2007; Simon & Geha 2007; Stri-
gari et al. 2008).
For our fiducial corrections, following the convention of

Koposov et al. (2007), we have not included Segue 1, as it
does not lie inside the DR5 footprint and hence the published
DR5 detection limits are not applicable. We do include Segue
1 in an alternative correction scenario below (see Table 3).
We do not correct the classical dwarf satellite galaxies for lu-
minosity bias or sky coverage, because appropriate detection
limits for these classical dwarf satellites are unclear given that
they are not part of a homogeneous survey like SDSS. We
assume that all satellites within those magnitude bins would
have been discovered anywhere in the sky, with the possible
exception of objects at low Galactic latitudes, where Milky
Way extinction and contamination become significant (Will-
man et al. 2004a). This assumption is conservative in the
sense that it will bias our total numerical estimate low, but
it is only a minor effect, as our correction described in §3 is
dominated by low luminosity satellites.
Before we use the radial distribution of Via Lactea subha-

los to correct the observed luminosity function, it is impor-
tant to investigate whether this assumption is even self consis-
tent with the data we have on the radial distribution of known
satellites. The relevant comparison is shown in Figure 5. We
have normalized to an outer radiusRouter = 417 kpc (slightly
larger than the Via Lactea virial radius) in order to allow a

comparison that includes the DR5 dwarf Leo T; this exten-
sion is useful because the known dwarf satellite count is so
low that even adding one satellite to the distribution increases
the statistics significantly.
The radial distribution of all 23 known Milky Way satel-

lites is shown by the magenta dashed line in Figure 5. The
four solid lines show radial distributions for four choices of
subhalo populations: the 65 largest vpeak(upper) subhalos (65
LBA) as discussed in Madau et al. (2008), vpeak > 10 km
s−1 (upper-middle), vpeak > 5 km s−1 (lower-middle), and

vmax > 7 km s−1 (lower). We note that the all-observed pro-
file is clearly more centrally concentrated than any of the the-
oretical subhalo distributions. However, as shown in Figure
1, our limited ability to detect faint satellite galaxies almost
certainly biases the observed satellite population to be more
centrally concentrated than the full population.
If we include only the 11 satellites (excluding SMC and

LMC) that are bright enough to be detected within 417 kpc
(MV ! −7), we obtain the thick blue dashed line. This dis-
tribution is significantly closer to all of the theoretical sub-
halo distributions, and matches quite well within r ∼ 50 kpc,
where the incompleteness correction to the luminosity func-
tion will matter most. It is still more centrally concentrated
then the distribution of all subhalos, however, as has been
noted in the past (at least for the classical satellites – e.g. Will-
man et al. 2004b; Diemand et al. 2004; Kravtsov et al. 2004).
In order to more rigorously determine whether the theoreti-
cal distribution is consistent with that of the 11 “complete”
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Boötes I -6.3 2.83 × 104 60 242 1.0

Ursa Major I -5.5 1.36 × 104 106 318 0.56

Leo IV -5.0 8.55 × 103 158 116 0.79

Canes Venatici II -4.9 7.80 × 103 151 74 0.47

Ursa Major II -4.2 4.09 × 103 32 140 0.78

Coma -4.1 3.7 × 103 44 77 0.97
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four solid lines show radial distributions for four choices of
subhalo populations: the 65 largest vpeak(upper) subhalos (65
LBA) as discussed in Madau et al. (2008), vpeak > 10 km
s−1 (upper-middle), vpeak > 5 km s−1 (lower-middle), and

vmax > 7 km s−1 (lower). We note that the all-observed pro-
file is clearly more centrally concentrated than any of the the-
oretical subhalo distributions. However, as shown in Figure
1, our limited ability to detect faint satellite galaxies almost
certainly biases the observed satellite population to be more
centrally concentrated than the full population.
If we include only the 11 satellites (excluding SMC and

LMC) that are bright enough to be detected within 417 kpc
(MV ! −7), we obtain the thick blue dashed line. This dis-
tribution is significantly closer to all of the theoretical sub-
halo distributions, and matches quite well within r ∼ 50 kpc,
where the incompleteness correction to the luminosity func-
tion will matter most. It is still more centrally concentrated
then the distribution of all subhalos, however, as has been
noted in the past (at least for the classical satellites – e.g. Will-
man et al. 2004b; Diemand et al. 2004; Kravtsov et al. 2004).
In order to more rigorously determine whether the theoreti-
cal distribution is consistent with that of the 11 “complete”

•Search MW-analogs in SDSS 
for satellite galaxies 

•Probabilistic model using 
background subtraction 

•Rely on spectroscopic and 
photometric redshifts  

How rare is the Milky Way Galaxy?
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• the area of a group of pixels of S contiguously
above Sth(n∗) (white line, Fig 2) is greater than
60.0 square arcminutes
or

• any single pixel value is greater than 1.75×Sth(n∗).

We implement these adaptive density thresholds as a
function of local stellar density n∗, so that the algorithm
may be run over large fields with varying density and
allow direct comparison between fields of greatly different
densities. The stellar density n∗ is calculated for each
pixel of the smoothed, normalized, spatial array S, as
the 0.9◦ × 0.9◦ running average of the original spatial
density array E.

To summarize our algorithm:

• Apply CMD cuts, bin spatial positions of remaining
stars into E

• Smooth E with Plummer profile to get A

• Calculate the 0.9◦×0.9◦ running mean Ā and run-
ning standard deviation Aσ

• Define S as S = (A − Ā)/Aσ

• Calculate array of threshold values Sth as function
of stellar density n∗ (from 0.9◦×0.9◦ running mean
of E)

• Detections are where contiguous regions of pixels
with S > Sth is greater than 60.0 sq arcmin or any
single pixel is greater than 1.75 × Sth.

3.5. Identifying and Evaluating Detections

For each of our DR6 data strips defined in §3.1, the
steps outlined in the previous sections are repeated in
0.5 magnitude distance modulus intervals, and these 16
frames are layered to form a 3-dimensional array. This
3D approach eliminates complications with multiple de-
tections of a single object using selection criteria for dif-
ferent distance moduli, and selects out the strongest de-
tection. The coordinates of stars within each detection
and the CMD within the detection’s area are plotted for
later visual inspection. Galaxy clusters and point sources
around partially resolved background galaxies (such as
their associated globular clusters) will contaminate the
detections, but these can be identifiable based on their
CMDs (see Figure 9 in §4), leaving a list of potential new
Milky Way satellite galaxies and globular clusters. At
this point follow up observations are typically necessary
to confirm the existence and nature of these candidates.

4. APPLICATION TO SDSS DATA RELEASE 6

We apply our search algorithm (as described in §3) to
21,439,777 sources with r < 22.0 and g − r < 1.0 in the
9,500 deg2 of imaging data in Data Release 6 of the SDSS.
The DR6 footprint is shown in Figure 4, along with pre-
viously known dSphs (open blue circles) and satellites
discovered in SDSS (closed red circles).

The significance of our detections of known objects in
terms of their peak density and area are shown in Figure
5. In the total area of DR6 analyzed, we find 100 unique
detections above the thresholds, defined by the dotted

Fig. 4.— Aitoff projection of the DR6 footprint in Galactic
coordinates, centered on the Galactic center. Previously known
dwarfs are marked with open blue circles, satellites discovered in
SDSS are marked with filled red circles.

lines of Figure 5. The positions of each of these detec-
tions are cross-referenced against the SIMBAD database
4 as well as visually inspected via the SDSS Finding
Chart Tool5. Of our 100 detections, 19 are MW/Local
Group dwarfs (counting Boötes II, Willman 1 and Segue
1), 17 are Galactic globular clusters (including Koposov
1 and 2), 2 are known open clusters, 28 are clustering of
point sources associated with background galaxies such
as unresolved distant globular clusters, and four are Abell
galaxy clusters. The remaining 30 do not correspond to
any catalogued objects, but color-magnitude diagrams of
only a handful of these are consistent enough with a faint
MW satellite to warrant follow-up. The remainder may
be galaxy clusters whose detected center differs from its
cataloged centre by more than ∼ 0.25◦, or perhaps tidal
debris. If the MW stellar halo is the result of accretion
of dSph then evidence of this accretion is expected. It
should be noted that objects with relatively large angu-
lar size, such as Draco and Sextans, substantially increase
the average stellar density of the area they occupy which
increases the threshold density, meaning they are not as
high above the density threshold as one might expect.
Due to the area threshold however, they are still very
prominent detections.

We recover all of the newly discovered objects that are
within DR6 and the “classically” known Draco, Leo, Leo
II, Leo A, Sextans, and Pegasus DIG dwarfs. Our detec-
tions of the new dwarfs are presented in Figures 6, 7, and
8. These figures are identical to those output by the auto-
mated algorithm for each detection, aside from the addi-
tion of figure titles (MV and distances from Martin et al.
2008 and references therein). The left panel shows the
spatial positions of stars passing the photometric selec-
tion criteria at the distance modulus the object was most
strongly detected at. The middle-left panel shows the
contour plot corresponding to S, where the contour lev-
els are (S)/Sth(n∗) = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0.

4 http://simbad.u-strasbg.fr/simbad/
5 http://cas.sdss.org/astrodr6/en/tools/chart/chart.asp
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✦ Cold dark matter predicts dozens 
of ‘dark’ satellites more massive 
than the dwarf spheroidals 
(‘Too big to fail problem’ Boylan-Kolchin 
et al. 2011)
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vast majority of the ∼ 2500 potential satellite galaxies; for
these low-mass halos, all star formation must happen before
zreion. With this in mind, we can define a subhalo as being a
satellite galaxy using a two parameter model: A subhalo must
grow to a threshold mass, Mt, above which HI cooling will
allow star formation, before the host halo reionizes at zreion in
order to host a satellite.
While we demonstrate the effects of varying both param-

eters in the next section, the work of Abel et al. (2002) uses
high resolution AMR simulations to model the formation of

the first stars and indicates that we anticipate Mt ≈ 106 −

107h−1M!. It is important to note that this process of hy-
drogen cooling simply defines a minimum mass of the pop-
ulation of the dark matter subhalos that could host satellite
galaxies. However, this work predicts the stars forming in
these halos to be very massive and short–lived. As such
these very first star forming halos cannot be the direct pro-
genitors of Milky Way satellites, which are observed to be
metal-enriched objects with stars presumably of masses less
than a solar mass. More relevant here are the calculations of
Wise & Abel (2008), who followed the build up of halos up
to the masses when they start cooling via Lyman-alpha from
neutral hydrogen. They included the radiative as well as the
supernova feedback from the first generation of massive stars.
The short-lived sources keep ionizing the baryonic material
in the halos they form in, as well as their surroundings. How-
ever, as they turn off, material can cool again and repopulate
the dark matter halos. So while the baryon fraction (Fig. 4 in
Wise & Abel 2008) fluctuates and decreases at times to as lit-
tle as 10%, star formation can continue as long as no sustained
external UV flux sterilizes the halo. The latter case severely
limits star formation and has been discussed many time in the
literature (e.g., Babul & Rees 1992; Thoul & Weinberg 1996;
Kepner et al. 1999; Dijkstra et al. 2004). It seems clear then
from the limited guidance we have from numerical simula-
tions that most Milky Way satellite halo progenitors experi-
encedmost of their star formation before they are permanently
ionized.
Once we have identified satellite galaxies in the simula-

tion, we must assign magnitudes to them in order to make
direct comparisons with observations and to account for ob-
servational completeness effects. This is done using two
methods. First, we use a halo abundance matching method
(Kravtsov et al. 2004a; Blanton et al. 2008). Here, luminosi-
ties are assigned to halos by assuming a one-to-one corre-
spondence between n(< MV ), the observed number density
of galaxies brighter than Mv, with n(> vmax), the number
density of simulated halos with maximum circular veloci-
ties larger than vmax. For the distribution of magnitudes, we
use the double-Schechter fit of Blanton et al. (2005) for low
luminosity SDSS galaxies in the g− and r−bands down to
Mr = −12.375. The vmax values are taken from the halo catalog
of a 160 Mpc/h simulation complete down to vmax ≈ 90km/s.
In order to extrapolate this to lower circular velocities, we
calculate a power-law fit to the low end of the dn/dvmax func-
tion. The resulting correspondence is shown in Figure 1 for
the r−, g−, andV−bands (red, green, and black curves). TheV
band magnitudes are calculated using the transformationV =
g − 0.55(g− r) − 0.03 from Smith et al. (2002). This method
implicitly assumes that all galaxies have average color. Since
the data from Blanton et al. (2005) is not deep enough to map
onto the dwarf galaxy distribution, we use a power law to ex-
trapolate the MV (vmax) relation to lower magnitudes. For the
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FIG. 1.— The relationship between magnitude and vmax for the r−, g−, and
V− bands using abundance matching (solid red, green and black lines). The
dashed lines show power law fits to the low-luminosity end.

V−band, we get

MV −5log(h) = 18.2−2.5log

[

( vmax

1km/s

)7.1
]

. (1)

When selecting the appropriate vmax for assigning a luminos-
ity, we follow the method of Conroy et al. (2006) and choose
the peak vmax over the trajectory of the subhalo for subhalos

that eventually cross the 105K post-reionization star forming
threshold. For subhalos that never reach this threshold, we use
the value of vmax at zreion. In both cases, this then corresponds
roughly to the mass the halo had at the redshift they stopped
rapidly forming stars.
The appeal of this method is that we are able to ignore

much of the poorly understood (and poorly simulated) physics
of galaxy formation using a statistical method that has been
shown to, on average, reproduce a wide variety of observ-
able properties for moremassive galaxies (Conroy et al. 2006;
Conroy & Wechsler 2009), as well as some properties of
dwarf galaxies down to vmax ∼ 50km/s (Blanton et al. 2008).
It is still unclear how this method will fare at lower masses;
it must break down for small halos once they no longer host
one galaxy on average. If this transition is sharp, however,
it may be a reasonable approximation for most of the mass
range where halos host galaxies.
As a second approach for assigning magnitudes, we use a

toy model to predict the star formation rate and stellar mass
of a satellite combined with the stellar population synthesis
(SPS) code of Bruzual & Charlot (2003)3. Here, we again as-
sume that star formation begins when the satellite first crosses
the mass threshold, Mt, and ends at the reionization time,
zreion. During this period, the star formation rate is set by the
dark matter mass of the subhalo,

SFR =

{

ε
(

fcoldgas
MDM

1 M!

)α

ifMDM >Mt, z> zreion

0 otherwise
(2)

where fcoldgas is the fraction of cold gas in the halo, and
α and ε are free parameters. This is similar to model 1B
of Koposov et al. (2009), with a couple of key differences.
First, we impose a hard truncation of star formation at the
epoch of reionization, something they only consider using

3 http://www.cida.ve/ bruzual/bc2003
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Magellanic Clouds around other ‘Milky Ways’

Magellanic Cloud-like Galaxies

6 LIU ET AL.

Fig. 2.— Images of selected MW-like hosts with exactly two MC-like satellites in the SDSS spectroscopic catalog, identified as those
objects within a radius of 150 kpc and within 300 km s�1of the host. Each image is scaled to 300 physical kpc on a side, centered on
the host galaxy. Satellites identified as MC-like companions are circled in yellow. The 1st, 2nd, 4th, and 11th images (counting from left
to right, top to bottom) show at least one bright, close companion to the MW-sized host. Image 11 shows two such objects at the same
redshift as the central galaxy. In each of these cases, the companion is recognized as a satellite of the host but is too luminous to meet
our criteria for being an MC-like satellite. The 5th, 6th, 8th, 9th, and 11th images feature prominent background objects with spectra at
dissimilar redshifts. Background objects without spectra are clearly visible in every panel. The 5th and 12th panels exhibit fiber collisions.
The blue object next to the upper left MC-like satellite in panel 5, though bright enough, did not have its spectrum collected or analyzed,
similarly, the object to the right of the bluer MC-like satellite in panel 12 has no redshift or absolute magnitude information due to fiber
collisions.

•About 600 systems with spectra 
on MC-like satellites 

•About 10,000 systems with 
photometric redshifts on MC-like 
satellites 

From cosmological surveys: 

Large Magellanic Cloud

Small Magellanic Cloud

• About 5% of ‘Milky Ways’ have 
‘Magellanic Clouds’ [Liu et al. 2010, Lares et al. 
2011; James & Ivory 2011; Tollerud et al. 2011, Guo et 
al. 2011]

From simulations:

• 5-10% of ‘Milky Ways’ have 
‘Magellanic Clouds’  [Boylan-Kolchin et al. 
2009; Busha et al. 2010]

Liu et al. 2010



Dwarf spheroidals around other ‘Milky Ways’

✦ Going fainter difficult because 
unreliable distances to 
satellites 

✦ However it is the most 
important regime for the 
satellite abundance issue!

Faintest satellites in SDSS

•Very few systems with spectra 
for Fornax-like satellites

•About 1,000 systems with 
photometric redshifts for Fornax-
like satellites 

✦ Can only use bright, nearby 
‘Milky Ways’
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Figure 2. Left: Mean number of satellites brighter than ∆m magnitudes fainter than the primary galaxy, assuming primaries within
±0.25 magnitudes of the Milky Way. Blue diamonds are determined from the spectroscopic sample of satellites (method 1), black squares
from the photometric sample (method 3). The solid errors are the uncertainty on the mean, the thin, dashed errors are the intrinsic scatter
(σs from Eq. 3). The arrows indicate 90% c.l. upper limits. The red triangles indicate the Milky Way satellites. Right: Same as left, except
for primaries within ±0.25 magnitudes of M31.

MW-like primaries and ∆m = [4, 5], we find a mean in-
trinsic scatter of σs = [0.56±0.04, 0.89±0.19], where the
errors represent one-sigma uncertainties as above. The
best-fitting values for σs are shown as thin, dashed er-
ror bars in Fig. 2 for ∆m ≤ 7. Via the method out-
lined in Liu et al. (2011), we are also able to estimate
the full probability distribution down to ∆m = 5; here
we find that the probability to obtain [0, 1, 2, 3] satel-
lites with ∆m < 5 is [0.59, 0.25, 0.11, 0.03, 0.02]. Down
to fainter magnitudes, the spectroscopic sample is too
sparse to measure the full satellite probability distribu-
tion. These results indicate that there is still substantial
intrinsic scatter in the satellite population, even at the
brightest scales.

5. COMPARISON TO PREVIOUS RESULTS

There have been several recent analyses on the pop-
ulation of bright satellites around MW-analog galaxies
along the lines presented in this paper. It is instructive
to compare the results presented here to these previous
analyses.

Guo et al. (2011) used SDSS DR7 to construct the lu-
minosity function of satellites down to the magnitude
scale of Fornax, correcting for the incompleteness of
SDSS. These authors used best-fitting photometric red-
shifts from DR7 to eliminate obvious background galax-
ies. Our analysis differs from these authors in that we
utilize both DR8 imaging and a maximum likelihood
method that incorporates full photometric redshift prob-
ability distributions. We also directly quantify the bias
in abundance counts for faint satellites that is incurred
when utilizing available photometric redshifts. Via some-
what different methods for cutting background galaxies,
Lares et al. (2011) use DR7 data to obtain a mean num-
ber of satellites down to the magnitude of Sagittarius for
projected radii ! 100 kpc. As we discuss above, we have

verified that our results are consistent with these authors
over the radial range considered, and further that we do
not incur a significant bias by including galaxies within
projected radii < 100 kpc. Tollerud et al. (2011) utilize
the DR7 volume-limited spectroscopic sample and find
that ∼ 40% of MW-analogs have satellites brighter than
the LMC within 250 kpc. James & Ivory (2011) use Hα
narrow band imaging to search for start forming galax-
ies around 143 spiral galaxies like the MW, and find that
nearly two-thirds do not have satellites that resemble the
Magellanic Clouds. These latter two results are consis-
tent with the spectroscopic results that we present for
bright satellites.

6. DISCUSSION AND CONCLUSION

We have used DR8 photometric redshift data to limit
the mean number of satellites around MW-analog galax-
ies down to ten magnitudes fainter than the MW. At
least down to the scale of Sagittarius, the results indi-
cate that the MW is not a significant statistical outlier
in its number of bright, classical satellites.
Our 90% c.l. upper bound of " 13 satellites brighter

than the Fornax dSph already places a strict bound on
the efficiency of galaxy formation at the dSph luminos-
ity scale. This is particularly true considering that there
are anywhere from ∼ 25 − 75 dark matter subhalos in
the Aquarius simulations (Springel et al. 2008) that have
present-day circular velocities greater than that of For-
nax. However, it is very interesting to note that the ob-
servational result we present is perfectly consistent with
abundance matching extrapolations for the satellite lu-
minosity function, which predict ∼ 1.2, 1.7 satellites for
magnitude differences ∆m = 7, 10 (Busha et al. 2011).
This does not guarentee that such models will have the
correct velocity function; in fact it appears increasingly
difficult to simultaneously match both the luminosities

Strigari & Wechsler ApJ  2012
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Figure 2. Left: Mean number of satellites brighter than ∆m magnitudes fainter than the primary galaxy, assuming primaries within
±0.25 magnitudes of the Milky Way. Blue diamonds are determined from the spectroscopic sample of satellites (method 1), black squares
from the photometric sample (method 3). The solid errors are the uncertainty on the mean, the thin, dashed errors are the intrinsic scatter
(σs from Eq. 3). The arrows indicate 90% c.l. upper limits. The red triangles indicate the Milky Way satellites. Right: Same as left, except
for primaries within ±0.25 magnitudes of M31.

MW-like primaries and ∆m = [4, 5], we find a mean in-
trinsic scatter of σs = [0.56±0.04, 0.89±0.19], where the
errors represent one-sigma uncertainties as above. The
best-fitting values for σs are shown as thin, dashed er-
ror bars in Fig. 2 for ∆m ≤ 7. Via the method out-
lined in Liu et al. (2011), we are also able to estimate
the full probability distribution down to ∆m = 5; here
we find that the probability to obtain [0, 1, 2, 3] satel-
lites with ∆m < 5 is [0.59, 0.25, 0.11, 0.03, 0.02]. Down
to fainter magnitudes, the spectroscopic sample is too
sparse to measure the full satellite probability distribu-
tion. These results indicate that there is still substantial
intrinsic scatter in the satellite population, even at the
brightest scales.

5. COMPARISON TO PREVIOUS RESULTS

There have been several recent analyses on the pop-
ulation of bright satellites around MW-analog galaxies
along the lines presented in this paper. It is instructive
to compare the results presented here to these previous
analyses.

Guo et al. (2011) used SDSS DR7 to construct the lu-
minosity function of satellites down to the magnitude
scale of Fornax, correcting for the incompleteness of
SDSS. These authors used best-fitting photometric red-
shifts from DR7 to eliminate obvious background galax-
ies. Our analysis differs from these authors in that we
utilize both DR8 imaging and a maximum likelihood
method that incorporates full photometric redshift prob-
ability distributions. We also directly quantify the bias
in abundance counts for faint satellites that is incurred
when utilizing available photometric redshifts. Via some-
what different methods for cutting background galaxies,
Lares et al. (2011) use DR7 data to obtain a mean num-
ber of satellites down to the magnitude of Sagittarius for
projected radii ! 100 kpc. As we discuss above, we have

verified that our results are consistent with these authors
over the radial range considered, and further that we do
not incur a significant bias by including galaxies within
projected radii < 100 kpc. Tollerud et al. (2011) utilize
the DR7 volume-limited spectroscopic sample and find
that ∼ 40% of MW-analogs have satellites brighter than
the LMC within 250 kpc. James & Ivory (2011) use Hα
narrow band imaging to search for start forming galax-
ies around 143 spiral galaxies like the MW, and find that
nearly two-thirds do not have satellites that resemble the
Magellanic Clouds. These latter two results are consis-
tent with the spectroscopic results that we present for
bright satellites.

6. DISCUSSION AND CONCLUSION

We have used DR8 photometric redshift data to limit
the mean number of satellites around MW-analog galax-
ies down to ten magnitudes fainter than the MW. At
least down to the scale of Sagittarius, the results indi-
cate that the MW is not a significant statistical outlier
in its number of bright, classical satellites.
Our 90% c.l. upper bound of " 13 satellites brighter

than the Fornax dSph already places a strict bound on
the efficiency of galaxy formation at the dSph luminos-
ity scale. This is particularly true considering that there
are anywhere from ∼ 25 − 75 dark matter subhalos in
the Aquarius simulations (Springel et al. 2008) that have
present-day circular velocities greater than that of For-
nax. However, it is very interesting to note that the ob-
servational result we present is perfectly consistent with
abundance matching extrapolations for the satellite lu-
minosity function, which predict ∼ 1.2, 1.7 satellites for
magnitude differences ∆m = 7, 10 (Busha et al. 2011).
This does not guarentee that such models will have the
correct velocity function; in fact it appears increasingly
difficult to simultaneously match both the luminosities
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• Down to limits of modern 
surveys, Milky Way is 
‘normal’ (Strigari & Wechsler ApJ 2012)

• Significant improvement very 
soon with new larger scale surveys

• Is the solution to satellites 
issue likely due to incomplete 
theory?



Conclusions

• CDM-based, NFW dark matter profiles are consistent with 
dwarf spheroidal data (dSph)

• Down to about the luminosity of Fornax, hints that the Milky 
Way is ‘average’

• Important to both improve theory and understand 
observational systematics to get a handle to classic CDM issues 

•Picture should be much more clear next few years...


